CÁC CHỦ ĐỀ CHO BÀI TẬP LỚN

(2 sinh viên/nhóm, viết báo cáo và slide trình bày)

I. Time Complexity

1. MEASURING COMPLEXITY

Big-O and small-o notation - Analyzing algorithms - Complexity relationships among models 2. THE CLASS P Polynomial time - Examples of problems in P 3. THE CLASS NP Examples of problems in NP - The P versus NP question 4. NP-COMPLETENESS Polynomial time reducibility - Definition of NP-completeness - The Cook-Levin Theorem 5. EXAMPLES OF NP-COMPLETE PROBLEMS The vertex cover problem - The Hamiltonian path problem - The subset sum problem **II. Space Complexity** 1. SAVITCH'S THEOREM 2. THE CLASS PSDACE

2. THE CLASS PSPACE
3. PSPACE-COMPLETENESS *The TQBF problem - Winning strategies for games - Generalized geography*4. THE CLASSES L AND NL
5. NL-COMPLETENESS *Searching in graphs*6. NL EQUALS CONL

III. Intractability

HIERARCHY THEOREMS
 Exponential space completeness RELATIVIZATION
 Limits of the diagonalization method CIRCUIT COMPLEXITY
 COMPLEXITY COMPLEXITY COMPLEXITY

IV. Advanced Topics in Complexity Theory

APPROXIMATION ALGORITHMS
 PROBABILISTIC ALGORITHMS
 Probabilistic Algorithms
 The class BPP - Primality - Read-once branching programs
 ALTERNATION
 Alternating time and space - The Polynomial time hierarchy
 INTERACTIVE PROOF SYSTEMS
 Graph nonisomorphism - Definition of the model - IP = PSPACE
 PARALLEL COMPUTATION
 Uniform Boolean circuits - The class NC - P-completeness
 CRYPTOGRAPHY
 Secret keys - Public-key cryptosystems - One-way functions - Trapdoor functions